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Abstract

The Supersymmetry Les Houches Accord (SLHA) [1] provides a uni-
versal set of conventions for conveying spectral and decay information for
supersymmetry analysis problems in high energy physics. Here, we propose
extensions of the conventions of the first SLHA to include various gener-
alisations: the minimal supersymmetric standard model with violation of
CP, R-parity, and flavour, as well as the simplest next-to-minimal model.
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1 Introduction

Supersymmetric (SUSY) extensions of the Standard Model rank among the most promising
and well-explored scenarios for New Physics at the TeV scale. Given the long history of
supersymmetry and the number of people working in the field, several different conventions
for defining supersymmetric theories have been proposed over the years, many of which have
come into widespread use. At present, therefore, no unique set of conventions prevails. In
principle, this is not a problem. As long as everything is clearly and consistently defined,
a translation can always be made between two sets of conventions.

However, the proliferation of conventions does have some disadvantages. Results ob-
tained by different authors or computer codes are not always directly comparable. Hence,
if author/code A wishes to use the results of author/code B in a calculation, a consistency
check of all the relevant conventions and any necessary translations must first be made – a
tedious and error-prone task.

To deal with this problem, and to create a more transparent situation for non-experts,
the original SUSY Les Houches Accord (SLHA1) was proposed [1]. This accord uniquely
defines a set of conventions for supersymmetric models together with a common interface
between codes. The most essential fact is not what the conventions are in detail (they largely
resemble those of [2]), but that they are consistent and unambiguous, hence reducing the
problem of translating between conventions to a linear, rather than a factorial, dependence
on the number of codes involved. At present, these codes can be categorised roughly as
follows (see [3, 4] for a quick review and on-line repository):

• Spectrum calculators [5–8], which calculate the supersymmetric mass and coupling
spectrum, assuming some (given or derived) SUSY-breaking terms and a matching to
known data on the Standard Model parameters.

• Observables calculators [9–15]; packages which calculate one or more of the fol-
lowing: collider production cross sections (cross section calculators), decay partial
widths (decay packages), relic dark matter density (dark matter packages), and indi-
rect/precision observables, such as rare decay branching ratios or Higgs/electroweak
observables (constraint packages).

• Monte-Carlo event generators [16–24], which calculate cross sections through explicit
statistical simulation of high-energy particle collisions. By including resonance decays,
parton showering, hadronisation, and underlying-event effects, fully exclusive final
states can be studied, and, for instance, detector simulations interfaced.

• SUSY fitting programs [25,26] which fit model parameters to collider-type data.

At the time of writing, the SLHA1 has already, to a large extent, obliterated the need for
separately coded (and maintained and debugged) interfaces between many of these codes.
Moreover, it has provided users with input and output in a common format, which is more
readily comparable and transferable. Finally, the SLHA convention choices are also being
adapted for other tasks, such as the SPA project [27]. We believe, therefore, that the
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SLHA project has been useful, solving a problem that, for experts, is trivial but frequently
occurring and tedious to deal with, and which, for non-experts, is an unnecessary head-ache.

However, SLHA1 was designed exclusively with the MSSM with real parameters and
R-parity conservation in mind. Some recent public codes [6,7,28–32] are either implement-
ing extensions to this base model or are anticipating such extensions. It therefore seems
prudent at this time to consider how to extend SLHA1 to deal with more general super-
symmetric theories. In particular, we will consider the violation of R-parity (RPV), flavour
violation, and CP-violating (CPV) phases in the minimal supersymmetric standard model
(MSSM). We will also consider next-to-minimal models which we shall collectively label by
the acronym NMSSM.

There is clearly some tension between the desirable goals of generality of the models,
ease of implementation in programs, and practicality for users. A completely general accord
would be useless in practice if it was so complicated that no one would implement it. We
have agreed on the following for SLHA2: for the MSSM, we will here restrict our attention
to either CPV or RPV, but not both. We shall work in the Super-CKM/MNS basis
throughout (defined in Section 3.1), except in the RPV case where input parameters are
supposed to be in the interaction basis. For the NMSSM, we define one catch-all model and
extend the SLHA1 mixing only to include the new states, with CP, R-parity, and flavour
still assumed conserved.

To make the interface independent of programming languages, compilers, platforms etc,
the SLHA1 is based on the transfer of three different ASCII files (or potentially a character
string containing identical ASCII information): one for model input, one for spectrum
calculator output, and one for decay calculator output. We believe that the advantage of
implementation independence outweighs the disadvantage of codes using SLHA1 having to
parse input. Indeed, there are tools to assist with this task [33–35].

Care was taken in SLHA1 to provide a framework for the MSSM that could easily
be extended to the cases listed above. The conventions and switches described here are
designed to be a superset of those of the original SLHA1 and so, unless explicitly mentioned
in the text, we will assume the conventions of the original SLHA1 [1] implicitly. For
instance, all dimensionful parameters quoted in the present paper are assumed to be in the
appropriate power of GeV and all angles are in radians. In a few cases it will be necessary
to replace the original conventions. This is clearly remarked upon in all places where it
occurs, and the SLHA2 conventions then supersede the SLHA1 ones.

2 Model Selection

To define the general properties of the model, we propose to introduce global switches in
the SLHA1 model definition block MODSEL, as follows. Note that the switches defined here
are in addition to the ones in [1].
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BLOCK MODSEL

Switches and options for model selection. The entries in this block should consist of an
index, identifying the particular switch in the listing below, followed by another integer or
real number, specifying the option or value chosen:

3 : (Default=0) Choice of particle content. Switches defined are:
0 : MSSM. This corresponds to SLHA1.

1 : NMSSM. As defined here.

4 : (Default=0) R-parity violation. Switches defined are:
0 : R-parity conserved. This corresponds to the SLHA1.

1 : R-parity violated. The blocks defined in Section 3.2 should
be present.

5 : (Default=0) CP violation. Switches defined are:
0 : CP is conserved. No information even on the CKM phase is

used. This corresponds to the SLHA1.
1 : CP is violated, but only by the standard CKM phase. All

other phases assumed zero.
2 : CP is violated. Completely general CP phases allowed. Imag-

inary parts corresponding to the entries in the SLHA1 block
EXTPAR can be given in IMEXTPAR (together with the CKM
phase). In the case of additional SUSY flavour violation,
imaginary parts of the blocks defined in Section 3.1 should
be given, again with the prefix IM, which supersede the cor-
responding entries in IMEXTPAR.

6 : (Default=0) Flavour violation. Switches defined are:
0 : No (SUSY) flavour violation. This corresponds to the SLHA1.

1 : Quark flavour is violated. The blocks defined in Section 3.1.1
should be present.

2 : Lepton flavour is violated. The blocks defined in Section 3.1.2
should be present.

3 : Lepton and quark flavour is violated. The blocks defined in
Sections 3.1.1 and 3.1.2 should both be present.
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3 General MSSM

3.1 Flavour Violation

3.1.1 The quark sector and the super-CKM basis

Within the MSSM there are in general new sources of flavour violation arising from a
possible misalignment of quarks and squarks in flavour space. The severe experimental
constraints on flavour violation have no direct explanation in the structure of the uncon-
strained MSSM which leads to the well-known supersymmetric flavour problem.

The Super-CKM basis of the squarks [36] is very useful in this context because in
that basis only physically measurable parameters are present. In the Super-CKM basis the
quark mass matrix is diagonal and the squarks are rotated in parallel to their superpartners.
Actually, once the electroweak symmetry is broken, a rotation in flavour space

D o = VdD , U o = Vu U , D̄o = U∗
d D̄ , Ū o = U∗

u Ū , (1)

of all matter superfields in the superpotential

WQ = εab
[
(YD)ij H

a
1Q

b o
i D̄

o
j + (YU)ij H

b
2Q

a o
i Ū

o
j − µHa

1H
b
2

]
(2)

brings fermions from the interaction eigenstate basis {doL, uoL, doR, uoR} to their mass eigen-
state basis {dL, uL, dR, uR}:

doL = VddL , uoL = VuuL , doR = UddR , uoR = UuuR , (3)

and the scalar superpartners to the basis {d̃L, ũL, d̃R, ũR}. Through this rotation, the
Yukawa matrices YD and YU are reduced to their diagonal form ŶD and ŶU :

(ŶD)ii = (U †
dY

T
D Vd)ii =

√
2
md i

v1

, (ŶU)ii = (U †
uY

T
U Vu)ii =

√
2
mu i

v2

. (4)

Tree-level mixing terms among quarks of different generations are due to the misalignment
of Vd and Vu, expressed via the CKM matrix [37,38]

VCKM = V †
uVd , (5)

which is proportional to the tree-level ūLidLjW
+, ūLidRjH

+, and ūRidLjH
+ couplings (i, j =

1, 2, 3). This is also true for the supersymmetric counterparts of these vertices, in the limit
of unbroken supersymmetry.

In the super-CKM basis the 6×6 mass matrices for the up-type and down-type squarks
are defined as

Lmass
q̃ = − Φ†

uR
†
uRuM2

ũR
†
uRuΦu − Φ†

dR
†
dRdM2

d̃
R†
dRdΦd , (6)

where Φu = (ũL, c̃L, t̃L, ũR, c̃R, t̃R)T and Φd = (d̃L, s̃L, b̃L, d̃R, s̃R, b̃R)T . Ru,d are 6×6 unitary

matrices and Ru,dM2
ũ,d̃
R†
u,d are diagonal matrices with increasing mass squared values. The
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flavour-mixed mass matrices read:

M2
ũ =

 VCKM m̂2
Q̃
V †

CKM +m2
u +DuLL v2T̂

†
U − µmu cot β

v2T̂U − µ∗mu cot β m̂2
ũ +m2

u +DuRR

 , (7)

M2
d̃

=

 m̂2
Q̃

+m2
d +DdLL v1T̂

†
D − µmd tan β

v1T̂D − µ∗md tan β m̂2
d̃
+m2

d +DdRR

 . (8)

In the equations above we introduced the 3× 3 matrices

m̂2
Q̃
≡ V †

d m
2
Q̃
Vd , m̂2

ũ ≡ U †
um

2
ũ
T
Uu , m̂2

d̃
≡ U †

d m
2
d̃

T
Ud , (9)

T̂U ≡ U †
u T

T
U Vu , T̂D ≡ U †

d T
T
D Vd , (10)

where the un-hatted mass matrices and trilinear interaction matrices are given in the elec-
troweak basis of [1]. The matrices mu,d are the diagonal up-type and down-type quark
masses and Df LL,RR are the D-terms given by:

Df LL,RR = cos 2β m2
Z

(
T 3
f −Qf sin2 θW

)
1l3 , (11)

which are also flavour diagonal. Note that the up-type and down-type squark mass matrices
in eqs. (7) and (8) cannot be simultaneously flavour-diagonal unless m̂2

Q̃
is flavour-universal

(i.e. proportional to the identity in flavour space).

3.1.2 The lepton sector and the super-MNS basis

For the lepton sector, we adopt a super-MNS basis. Neutrino oscillation data have provided
a strong indication that neutrinos have masses and that there are flavour-changing charged
currents in the leptonic sector.

One popular model to produce such effects is the see-saw mechanism, where right-handed
neutrinos have both Majorana masses as well as Yukawa couplings with the left-handed
leptons [39–41]. When the heavy neutrinos are integrated out of the effective field theory,
one is left with three light approximately left-handed neutrinos which are identified with
the ones observed experimentally. There are other models of neutrino masses, for example
involving SU(2) Higgs triplets, that, once the triplets have been integrated out, also lead
to effective Majorana masses for the neutrinos. Here, we cover all cases that lead to a low
energy effective field theory with Majorana neutrino masses and one sneutrino per family.
In terms of this low energy effective theory, the lepton mixing phenomenon is analogous to
the quark mixing case and so we adapt the conventions defined above to the leptonic case.

After electroweak symmetry breaking, the neutrino sector of the MSSM contains the
Lagrangian pieces (in 2-component notation)

L = −1

2
νoT (mν)ν

o + h.c., (12)

where mν is a 3 × 3 symmetric matrix. The interaction eigenstate basis neutrino fields νo

are related to the mass eigenstate ones ν by

νo = Vνν, (13)
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reducing the mass matrix mν to its diagonal form m̂ν

(m̂ν)ii = (V T
ν mνVν)ii = mνi

. (14)

The charged lepton fields have a 3×3 Yukawa coupling matrix defined in the superpotential
piece [1]

WE = εab(YE)ijH
a
1L

bo
i Ē

o
j , (15)

where the charged lepton interaction eigenstates {eoL, eoR} are related to the mass eigenstates
{eL, eR, } by

eoL = VeeL and eoR = UeeR. (16)

The equivalent diagonalised charged lepton Yukawa matrix is

(ŶE)ii = (U †
eY

T
E Ve)ii =

√
2
mei

v1

. (17)

Lepton mixing in the charged current interaction can then be characterised by the MNS
matrix [42,43]

UMNS = V †
e Vν , (18)

which is proportional to the tree-level ēLiνjW
− and ēLiνjH

− couplings (i, j = 1, 2, 3). This
is also true for the supersymmetric counterparts of these vertices, in the limit of unbroken
supersymmetry.

Rotating the interaction eigenstates of the sleptons identically to their leptonic counter-
parts, we obtain the super-MNS basis for the charged sleptons and the sneutrinos, described
by the Lagrangian1

Lmass
l̃

= −Φ†
eM2

ẽΦe − Φ†
νM2

ν̃Φν , (19)

where Φν = (ν̃e, ν̃µ, ν̃τ )
T and Φe = (ẽL, µ̃L, τ̃L, ẽR, µ̃R, τ̃R)T . M2

ẽ is the 6× 6 matrix

M2
ẽ =

 m̂2
L̃

+m2
e +DeLL v1T̂

†
E − µme tan β

v1T̂E − µ∗me tan β m̂2
ẽ +m2

e +DeRR

 . (20)

M2
ν̃ is the 3× 3 matrix

M2
ν̃ = U †

MNS m̂
2
L̃
UMNS +DνLL, (21)

where DeLL and DνLL are given in eq. (11). In the equations above we introduced the 3×3
matrices

m̂2
L̃
≡ V †

e m
2
L̃
Ve , m̂2

ẽ ≡ U †
e m

2
ẽ
T
Ue , (22)

T̂E ≡ U †
e T

T
E Ve , (23)

where the un-hatted mass matrices and trilinear interaction matrices are given in the in-
teraction basis of ref. [1]. We diagonalise the charged slepton and sneutrino mass matrices
via the 6×6 and unitary 3× 3 matrices Re,ν respectively. Thus, Re,νM2

ẽ,ν̃R
†
e,ν are diagonal

with increasing entries toward the bottom right of each matrix.

1We neglect the possible term ΦT
ν M̂2

ν̃Φν . Neutrino mass constraints usually imply that it is highly
suppressed and has negligible effect on collider phenomenology.
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3.1.3 Explicit proposal for SLHA2

As in the SLHA1 [1], for all running parameters in the output of the spectrum file, we
propose to use definitions in the modified dimensional reduction (DR) scheme. The basis is
the super-CKM/MNS basis as defined above, that is the one in which the Yukawa couplings
of the SM fermions, given in the DR scheme, are diagonal. Note that the masses and vacuum
expectation values (VEVs) in eqs. (4), (14), and (17) must thus be the running ones in the
DR scheme.

The input for an explicit implementation in a spectrum calculator consists of the fol-
lowing information:

• All input SUSY parameters are given at the scale Minput as defined in the SLHA1
block EXTPAR, except for EXTPAR 26, which, if present, is the pole pseudoscalar Higgs
mass2. If no Minput is present, the GUT scale is used.

• For the SM input parameters, we take the Particle Data Group (PDG) definition:
lepton masses are all on-shell. The light quark masses mu,d,s are given at 2 GeV, and

the heavy quark masses are given as mc(mc)
MS, mb(mb)

MS and mon−shell
t . The latter

two quantities are already in the SLHA1. The others are added to SMINPUTS in the
following manner (repeating the SLHA1 parameters for convenience):

1 : α−1
em(mZ)MS. Inverse electromagnetic coupling at the Z pole in the MS

scheme (with 5 active flavours).

2 : GF . Fermi constant (in units of GeV−2).

3 : αs(mZ)MS. Strong coupling at the Z pole in the MS scheme (with 5
active flavours).

4 : mZ , pole mass.

5 : mb(mb)
MS. b quark running mass in the MS scheme.

6 : mt, pole mass.

7 : mτ , pole mass.

8 : mν3 , pole mass.

11 : me, pole mass.

12 : mν1 , pole mass.

13 : mµ, pole mass.

14 : mν2 , pole mass.

21 : md(2GeV)MS. d quark running mass in the MS scheme.

22 : mu(2GeV)MS. u quark running mass in the MS scheme.

23 : ms(2GeV)MS. s quark running mass in the MS scheme.

2This is an evolution of the SLHA1 which is not present in the journal version of ref. [1].
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24 : mc(mc)
MS. c quark running mass in the MS scheme.

The FORTRAN format is the same as that of SMINPUTS in SLHA1 [1].

• VCKM: the input CKM matrix in the PDG parametrisation [44] (exact to all orders),
in the block VCKMIN. Note that present CKM studies do not precisely define a renor-
malisation scheme for this matrix since the electroweak effects that renormalise it are
highly suppressed and generally neglected. We therefore assume that the CKM ele-
ments given by PDG (or by UTFit and CKMFitter, the main collaborations that
extract the CKM parameters) refer to SM MS quantities defined at Q = mZ , to avoid
any possible ambiguity. VCKMIN should have the following entries (all in radians):

1 : θ12 (the Cabibbo angle)

2 : θ23

3 : θ13

4 : δ13

The FORTRAN format is the same as that of SMINPUTS above. Note that the three
θ angles can all be made to lie in the first quadrant by appropriate rotations of the
quark phases.

• UMNS: the input MNS matrix, in the block UMNSIN. It should have the PDG parame-
terisation in terms of rotation angles [44] (all in radians):

1 : θ̄12 (the solar angle)

2 : θ̄23 (the atmospheric mixing angle)

3 : θ̄13 (currently only has an upper bound)

4 : δ̄13 (the Dirac CP-violating phase)

5 : α1 (the first Majorana CP-violating phase)

6 : α2 (the second CP-violating Majorana phase)

The FORTRAN format is the same as that of SMINPUTS above. Majorana phases
have no effect on neutrino oscillations. However, they have physical consequences in
the case of, for example, ββ0ν decay of nuclei [44].

• (m̂2
Q̃
)DR
ij , (m̂2

ũ)
DR
ij , (m̂2

d̃
)DR
ij , (m̂2

L̃
)DR
ij , (m̂2

ẽ)
DR
ij : the squark and slepton soft SUSY-

breaking masses at the input scale in the super-CKM/MNS basis, as defined above.
They will be given in the new blocks MSQ2IN, MSU2IN, MSD2IN, MSL2IN, MSE2IN, with
the FORTRAN format

(1x,I2,1x,I2,3x,1P,E16.8,0P,3x,’#’,1x,A).

where the first two integers in the format correspond to i and j and the double
precision number to the soft mass squared. Only the “upper triangle” of these matrices
should be given. If diagonal entries are present, these supersede the parameters in
the SLHA1 block EXTPAR
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• (T̂U)DR
ij , (T̂D)DR

ij , and (T̂E)DR
ij : the squark and slepton soft SUSY-breaking trilinear

couplings at the input scale in the super-CKM/MNS basis, in the same format as
the soft mass matrices above. If diagonal entries are present these supersede the A
parameters specified in the SLHA1 block EXTPAR [1].

For the output, the pole masses are given in block MASS as in SLHA1, and the DR and
mixing parameters as follows:

• (m̂2
Q̃
)DR
ij , (m̂2

ũ)
DR
ij , (m̂2

d̃
)DR
ij , (m̂2

L̃
)DR
ij , (m̂2

ẽ)
DR
ij : the squark and slepton soft SUSY-

breaking masses at scale Q in the super-CKM/MNS basis. Will be given in the
new blocks MSQ2 Q=..., MSU2 Q=..., MSD2 Q=..., MSL2 Q=..., MSE2 Q=..., with
formats as the corresponding input blocks MSX2IN above.

• (T̂U)DR
ij , (T̂D)DR

ij , and (T̂E)DR
ij : The squark and slepton soft SUSY-breaking trilinear

couplings in the super-CKM/MNS basis. Given in the new blocks TU Q=..., TD

Q=..., TE Q=..., which supersede the SLHA1 blocks AD, AU, and AE, see [1].

• (ŶU)DR
ii , (ŶD)DR

ii , (ŶE)DR
ii : the diagonal DR Yukawas in the super-CKM/MNS basis,

with Ŷ defined by eqs. (4) and (17), at the scale Q. Given in the SLHA1 blocks YU

Q=..., YD Q=..., YE Q=..., see [1]. Note that although the SLHA1 blocks provide
for off-diagonal elements, only the diagonal ones will be relevant here, due to the
CKM/MNS rotation.

• The DR CKM matrix at the scale Q, in the PDG parametrisation [44]. Will be given
in the new block(s) VCKM Q=..., with entries defined as for the input block VCKMIN

above.

• The DR MNS matrix at the scale Q, again in the PDG parameterisation in the new
block UMNS Q=... with entries defined as for the input block UMNSIN above.

• The squark and slepton masses and mixing matrices should be defined as in the
existing SLHA1, e.g. extending the t̃, b̃ and ẽ mixing matrices to the 6×6 case. More
specifically, the new blocks Ru =USQMIX Rd =DSQMIX, Re =SELMIX and the 3 by 3
matrix for Rν =SNUMIX connect the particle codes (=mass-ordered basis) with the
super-CKM basis according to the following definition:



1000001
1000003
1000005
2000001
2000003
2000005


=



d̃1

d̃2

d̃3

d̃4

d̃5

d̃6


mass−ordered

= DSQMIXij



d̃L
s̃L
b̃L
d̃R
s̃R
b̃R


super−CKM

, (24)
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

1000002
1000004
1000006
2000002
2000004
2000006


=



ũ1

ũ2

ũ3

ũ4

ũ5

ũ6


mass−ordered

= USQMIXij



ũL
c̃L
t̃L
ũR
c̃R
t̃R


super−CKM

. (25)



1000011
1000013
1000015
2000011
2000013
2000015


=



ẽ1
ẽ2
ẽ3
ẽ4
ẽ5
ẽ6


mass−ordered

= SELMIXij



ẽL
µ̃L
τ̃L
ẽR
µ̃R
τ̃R


super−MNS

, (26)

 1000012
1000014
1000016

 =

 ν̃1

ν̃2

ν̃3


mass−ordered

= SNUMIXij

 ν̃eL

ν̃µL

ν̃τL


super−MNS

. (27)

Note! A potential for inconsistency arises if the masses and mixings are not calculated
in the same way, e.g. if radiatively corrected masses are used with tree-level mixing
matrices. In this case, it is possible that the radiative corrections to the masses shift
the mass ordering relative to the tree-level. This is especially relevant when near-
degenerate masses occur in the spectrum and/or when the radiative corrections are
large. In these cases, explicit care must be taken especially by the program writing
the spectrum, but also by the one reading it, to properly arrange the rows in the order
of the mass spectrum actually used.

3.2 R-Parity Violation

We write the superpotential of R-parity violating interactions in the notation of [1] as

WRPV = εab

[
1

2
λijkL

a
iL

b
jĒk + λ′ijkL

a
iQ

bx
j D̄kx − κiL

a
iH

b
2

]
+

1

2
λ′′ijkε

xyzŪixD̄jyD̄kz, (28)

where x, y, z = 1, . . . , 3 are fundamental SU(3)C indices and εxyz is the totally antisymmetric
tensor in 3 dimensions with ε123 = +1. In eq. (28), λijk, λ

′
ijk and κi break lepton number,

whereas λ′′ijk violate baryon number. To ensure proton stability, either lepton number
conservation or baryon number conservation is usually still assumed, resulting in either
λijk = λ′ijk = κi = 0 or λ′′ijk = 0 for all i, j, k = 1, 2, 3. In the treatment of R-parity violation,
we do not generalise the flavour discussion in Section 3.1 as it would lead to excessive
complication. We use known charged fermion masses for input along with interaction basis
R-parity violating couplings and neglect (s)quark/(s)lepton flavour mixing effects in the
same spirit as SLHA1.
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The trilinear R-parity violating terms in the soft SUSY-breaking potential are

V3,RPV = εab

[
1

2
(T )ijkL̃

a
iLL̃

b
jLẽ

∗
kR + (T ′)ijkL̃

a
iLQ̃

b
jLd̃

∗
kR

]
+

1

2
(T ′′)ijkεxyzũ

x∗
iRd̃

y∗
jRd̃

z∗
kR + h.c. . (29)

Note that we do not factor out the λ couplings (e.g. as in Tijk/λijk ≡ Aλ,ijk) in order to
avoid potential problems with λijk = 0 but Tijk 6= 0. This usage is consistent with the
convention for the R-conserving sector elsewhere in this report.

When lepton number is broken, additional bilinear soft SUSY-breaking potential terms
can appear,

VRPV2 = −εabDiL̃
a
iLH

b
2 + L̃†iaLm

2
L̃iH1

Ha
1 + h.c. , (30)

and the sneutrinos may acquire vacuum expectation values (VEVs) 〈ν̃e,µ,τ 〉 ≡ ve,µ,τ/
√

2.

The SLHA1 defined the VEV v, which at tree level is equal to 2mZ/
√
g2 + g′2 ∼ 246 GeV;

this is now generalised to

v =
√
v2

1 + v2
2 + v2

e + v2
µ + v2

τ . (31)

The addition of sneutrino VEVs allows for various different definitions of tan β, but we here
choose to keep the SLHA1 definition tan β = v2/v1.

3.2.1 Input/Output Blocks

For R-parity violating parameters and couplings, the naming convention for input blocks is
BLOCK RV#IN, where the ’#’ character represents the name of the relevant output block given
below (thus, for example, the “LLE” couplings λijk would be given in BLOCK RVLAMLLEIN).

Default inputs for all R-parity violating couplings are zero. The inputs are given at scale
Minput, as described in SLHA1 (again, if no Minput is given, the GUT scale is assumed), and
follow the output format given below (with the omission of Q= ...).

The dimensionless couplings λijk, λ
′
ijk, and λ′′ijk are given in BLOCK RVLAMLLE, RVLAMLQD,

RVLAMUDD Q= ... respectively. The output standard should correspond to the FORTRAN
format

(1x,I2,1x,I2,1x,I2,3x,1P,E16.8,0P,3x,’#’,1x,A) .

where the first three integers in the format correspond to i, j, and k and the double precision
number is the coupling.

Tijk, T
′
ijk, and T ′′ijk are given in BLOCK RVTLLE, RVTLQD, RVTUDD Q= ... in the same

format as for the λ couplings above.
The bilinear superpotential and soft SUSY-breaking terms κi, Di, and m2

L̃iH1
and the

sneutrino VEVs are given in BLOCK RVKAPPA, RVD, RVM2LH1, RVSNVEV Q= ... respec-
tively, in the format

(1x,I2,3x,1P,E16.8,0P,3x,’#’,1x,A) .

13



Input block Output block data
RVLAMLLEIN RVLAMLLE i j k λijk
RVLAMLQDIN RVLAMLQD i j k λ′ijk
RVLAMUDDIN RVLAMUDD i j k λ′′ijk
RVTLLEIN RVTLLE i j k Tijk
RVTLQDIN RVTLQD i j k T ′ijk
RVTUDDIN RVTUDD i j k T ′′ijk
NB: One of the following RV...IN blocks must be left out:

(which one up to user and RGE code)
RVKAPPAIN RVKAPPA i κi
RVDIN RVD i Di

RVSNVEVIN RVSNVEV i vi
RVM2LH1IN RVM2LH1 i m2

L̃iH1

Table 1: Summary of R-parity violating SLHA2 data blocks. All output parameters are
to be given in the Super-CKM/MNS basis, but input parameters should be given in the
interaction eigenstate basis. Only 3 out of the last 4 blocks are independent. Which block
to leave out of the input is in principle up to the user, with the caveat that a given spectrum
calculator may not accept all combinations. See text for a precise definition of the format.

The input and output blocks for R-parity violating couplings are summarised in Tab. 1.

As for the R-conserving MSSM, the bilinear terms (both SUSY-breaking and SUSY-
respecting ones, including µ) and the VEVs are not independent parameters. They become
related by the condition of electroweak symmetry breaking. Thus, in the SLHA1, one
had the possibility either to specify m2

H1
and m2

H2
or µ and m2

A. This carries over to the
RPV case, where not all the parameters in the input blocks RV...IN in Tab. 1 can be
given simultaneously. Specifically, of the last 4 blocks only 3 are independent. One block
is determined by minimising the Higgs-sneutrino potential. We do not here insist on a
particular choice for which of RVKAPPAIN, RVDIN, RVSNVEVIN, and RVM2LH1IN to leave out,
but leave it up to the spectrum calculators to accept one or more combinations.

Neutrino masses and leptonic mixing are considered as an output of the spectrum gen-
erator: providing interaction basis lepton number violating couplings in the input will, in
general, generate neutrino masses and lepton mixing, which codes may output.

3.2.2 Particle Mixing

The mixing of particles can change when L is violated. Phenomenological constraints
can often imply that any such mixing has to be small. It is therefore possible that some
programs may ignore the mixing in their output. In this case, the mixing matrices from
SLHA1 should suffice. However, in the case that mixing is considered to be important
and included in the output, we here present extensions to the mixing blocks from SLHA1
appropriate to the more general case.
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In general, the neutrinos mix with the neutralinos. This requires a change in the defi-
nition of the 4× 4 neutralino mixing matrix N to a 7× 7 matrix. The Lagrangian contains
the (symmetric) neutralino mass matrix as

Lmass
χ̃0 = −1

2
ψ̃0TMψ̃0ψ̃

0 + h.c. , (32)

in the basis of 2–component spinors ψ̃0 = (νe, νµ, ντ ,−ib̃,−iw̃3, h̃1, h̃2)
T . We define the

unitary 7× 7 neutralino mixing matrix N (block RVNMIX), such that:

−1

2
ψ̃0TMψ̃0ψ̃

0 = −1

2
ψ̃0TNT︸ ︷︷ ︸
χ̃0T

N∗Mψ̃0N
†︸ ︷︷ ︸

diag(mχ̃0 )

Nψ̃0︸ ︷︷ ︸
χ̃0

, (33)

where the 7 (2–component) generalised neutralinos χ̃i are defined strictly mass-ordered, i.e.
with the 1st,2nd,3rd lightest corresponding to the mass entries for the PDG codes 12, 14,
and 16, and the four heaviest to the PDG codes 1000022, 1000023, 1000025, and 1000035.

Note! although these codes are normally associated with names that imply a specific
flavour content, such as code 12 being νe and so forth, it would be exceedingly complicated
to maintain such a correspondence in the context of completely general mixing, hence we
do not make any such association here. The flavour content of each state, i.e. of each PDG
number, is in general only defined by its corresponding entries in the mixing matrix RVNMIX.
Note, however, that the flavour basis is ordered so as to reproduce the usual associations in
the trivial case (modulo the unknown flavour composition of the neutrino mass eigenstates).

In the limit of CP conservation, the default convention is that N be a real symmetric
matrix and the neutralinos may have an apparent negative mass. The minus sign may be
removed by phase transformations on χ̃0

i as explained in SLHA1 [1].
Charginos and charged leptons may also mix in the case of L-violation. In a similar

spirit to the neutralino mixing, we define

Lmass
χ̃+ = −1

2
ψ̃−TMψ̃+ψ̃

+ + h.c. , (34)

in the basis of 2–component spinors ψ̃+ = (e+, µ+, τ+,−iw̃+, h̃+
2 )T , ψ̃− = (e−, µ−, τ−,−iw̃−, h̃−1 )T

where w̃± = (w̃1 ∓ w̃2)/
√

2. Note that, in the limit of no RPV the lepton fields are mass
eigenstates.

We define the unitary 5 × 5 charged fermion mixing matrices U, V , blocks RVUMIX,

RVVMIX, such that:

−1

2
ψ̃−TMψ̃+ψ̃

+ = −1

2
ψ̃−TUT︸ ︷︷ ︸
χ̃−T

U∗Mψ̃+V
†︸ ︷︷ ︸

diag(mχ̃+ )

V ψ̃+︸ ︷︷ ︸
χ̃+

, (35)

where χ̃±i are defined as strictly mass ordered, i.e. with the 3 lightest states corresponding
to the PDG codes 11, 13, and 15, and the two heaviest to the codes 1000024, 1000037.
As for neutralino mixing, the flavour content of each state is in no way implied by its PDG
number, but is only defined by its entries in RVUMIX and RVVMIX. Note, however, that the
flavour basis is ordered so as to reproduce the usual associations in the trivial case.
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In the limit of CP conservation, U, V are be chosen to be real by default.
CP-even Higgs bosons mix with sneutrinos in the limit of CP symmetry. We write the

neutral scalars as φ0
i ≡

√
2Re

{
(H0

1 , H
0
2 , ν̃e, ν̃µ, ν̃τ )

T
}
, with the mass term

L = −1

2
φ0TM2

φ0φ0 , (36)

where M2
φ0 is a 5× 5 symmetric mass matrix.

One solution is to define the unitary 5× 5 mixing matrix ℵ (block RVHMIX) by

−φ0TM2
φ0φ0 = −φ0TℵT︸ ︷︷ ︸

Φ0T

ℵ∗M2
φ0ℵ†︸ ︷︷ ︸

diag(m2
Φ0 )

ℵφ0︸︷︷︸
Φ0

, (37)

where Φ0 ≡ (H0, h0, ν̃1, ν̃2, ν̃3) are the mass eigenstates (note that we have here labelled the
states by what they should tend to in the R-parity conserving limit).

CP-odd Higgs bosons mix with the imaginary components of the sneutrinos: We write
these neutral pseudo-scalars as φ̄0

i ≡
√

2Im
{
(H0

1 , H
0
2 , ν̃e, ν̃µ, ν̃τ )

T
}
, with the mass term

L = −1

2
φ̄0TM2

φ̄0φ̄
0 , (38)

where M2
φ̄0 is a 5× 5 symmetric mass matrix. We define the 4× 5 mixing matrix ℵ̄ (block

RVAMIX) by
−φ̄0TM2

φ̄0φ̄
0 = − φ̄0T ℵ̄T︸ ︷︷ ︸

Φ̄0T

ℵ̄∗M2
φ̄0ℵ̄†︸ ︷︷ ︸

diag(m2
Φ̄0 )

ℵ̄φ̄0︸︷︷︸
Φ̄0

, (39)

where Φ̄0 ≡ (A0, ν̃1, ν̃2, ν̃3) are the mass eigenstates. The Goldstone boson G0 (the “5th
component”) has been explicitly left out and the remaining 4 rows form a set of orthonormal
vectors.

If the blocks RVHMIX, RVAMIX are present, they supersede the SLHA1 ALPHA vari-
able/block.

The charged sleptons and charged Higgs bosons also mix in the 8 × 8 mass squared
matrix M2

φ± by a 7× 8 matrix C (block RVLMIX):

L = − (h−1 , h
+
2
∗
, ẽLi

, ẽRj
)CT︸ ︷︷ ︸

(H−,ẽα)

C∗M2
φ±C

T︸ ︷︷ ︸
diag(M2

Φ±
)

C∗


h−1

∗

h+
2

ẽ∗Lk

ẽ∗Rl

 , (40)

where i, j, k, l ∈ {1, 2, 3}, α, β ∈ {1, . . . , 6}, the non-braced product on the right hand
side is equal to (H+, ẽ∗β), and the Goldstone bosons G± (the “8th components”) have been
explicitly left out and the remaining 7 rows form a set of orthonormal vectors.

There may be contributions to down-squark mixing from R-parity violation. However,
this only mixes the six down-type squarks amongst themselves and so is identical to the
effects of flavour mixing. This is covered in Section 3.1 (along with other forms of flavour
mixing).
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3.3 CP Violation

When adding CP violation to mixing matrices and MSSM parameters, the SLHA1 blocks
are understood to contain the real parts of the relevant parameters. The imaginary parts
should be provided with exactly the same format, in a separate block of the same name but
prefaced by IM. The defaults for all imaginary parameters will be zero. Thus, for example,
BLOCK IMAU, IMAD, IMAE, Q= ... would describe the imaginary parts of the trilinear
soft SUSY-breaking scalar couplings. For input, BLOCK IMEXTPAR may be used to provide
the relevant imaginary parts of soft SUSY-breaking inputs. In cases where the definitions
of the current paper supersedes the SLHA1 input and output blocks, completely equivalent
statements apply.

One special case is the µ parameter whose absolute value is determined by the minimi-
sation equations imposed by electroweak symmetry breaking, leaving only the phase

ϕµ = tan−1(Im {µ} /Re {µ}) (41)

as an input parameter. In this case, SLHA2 generalizes the entry MINPAR(3) to contain
the cosine of the phase (as opposed to just sign(µ) in SLHA1), and we further introduce a
new block IMMINPAR whose entry 3 gives the sine of the phase, that is:

BLOCK MINPAR

3 : CP conserved: sign(µ).
CP violated: cosϕµ = Re {µ} /|µ|.

BLOCK IMMINPAR

3 : CP conserved: n/a.
CP violated: sinϕµ = Im {µ} /|µ|.

The Higgs sector mixing changes when CP symmetry is broken, since the CP-even and
CP-odd Higgs states mix. Writing the neutral scalars as φ0

i ≡
√

2(Re {H0
1} , Re {H0

2} ,
Im {H0

1} , Im {H0
2}) we define the 3× 4 mixing matrix S (blocks CVHMIX and IMCVHMIX) by

−φ0TM2
φ0φ0 = −φ0TST︸ ︷︷ ︸

Φ0T

S∗M2
φ0S†︸ ︷︷ ︸

diag(m2
Φ0 )

Sφ0︸︷︷︸
Φ0

, (42)

where Φ0 ≡ (H0
1 , H

0
2 , H

0
3 ) are the mass eigenstates and the Goldstone boson G0 (the “4th

component”) has been explicitly left out More explicitly, S is defined as

S ≡ (R|0) · T (43)

where

(R|0) ≡

 r11 r12 r13 0
r21 r22 r23 0
r31 r32 r33 0

 with

 H0
1

H0
2

H0
3

 =

 r11 r12 r13
r21 r22 r23
r31 r32 r33


 h
H
A


tree

(44)
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and (where tan β = v2/v1)

T ≡


− sinα cosα 0 0
cosα sinα 0 0

0 0 − sin β cos β
0 0 cos β sin β

 with


h
H
A
G


tree

= T · φ0 . (45)

Here α is the tree-level mixing angle in the CP-even Higgs sector, andR is the unitary matrix
relating the tree-level mass eigenstates with the higher-order corrected mass eigenstates (see,
however, ref. [32]). In order to reconstruct R from the matrix S given in the accord, the
angle α is needed. This should be given in the SLHA1 BLOCK ALPHA, but we emphasise that
it should here be the tree-level angle (while the higher-order corrections are now included
in the matrix S).

We associate the following PDG codes with these states, in strict mass order regardless
of CP-even/odd composition: H0

1 : 25, H0
2 : 35, H0

3 : 36. That is, even though the PDG
reserves code 36 for the CP-odd state, we do not maintain such a labelling here, nor one
that reduces to it. This means one does have to exercise some caution when taking the CP
conserving limit.

For the neutralino mixing matrix N , the default convention in SLHA1 (and hence for
the CP conserving case) is that N be a real symmetric matrix. The neutralinos may then
have an apparent negative mass, which can be removed by a phase transfiormation on χ̃0

i

as explained in SLHA1 [1]. When going to CPV, the reason for introducing the negative-
mass convention in the first place, namely maintaining N as a real matrix, disappears. We
therefore here take all masses real and positive, with N a complex matrix. This does lead to
a nominal dissimilarity in the limit of vanishing CP violation, but we note that the explicit
CPV switch in MODSEL can be used to decide unambiguously which convention to follow.

4 The Next-to-Minimal Supersymmetric SM

The first question to be addressed in defining universal conventions for the next-to-minimal
supersymmetric standard model is just what field content and which couplings this name
should apply to. The field content is already fairly well agreed upon; we shall here define
the next-to-minimal case as having exactly the field content of the MSSM with the addi-
tion of one gauge singlet chiral superfield. As to couplings and parameterisations, several
definitions exist in the literature. Rather than adopting a particular one, or treating each
special case separately, below we choose instead to work at the most general level. Any
particular special case can then be obtained by setting different combinations of couplings
to zero. For the time being, however, we do specialise to the SLHA1-like case without CP
violation, R-parity violation, or flavour violation. Below, we shall use the acronym NMSSM
for this class of models, but we emphasise that we understand it to relate to field content
only, and not to the presence or absence of specific couplings.
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4.1 Conventions

In addition to the MSSM terms, the most general CP conserving NMSSM superpotential
contains (extending the notation of SLHA1):

WNMSSM = −εabλSHa
1H

b
2 +

1

3
κS3 + µ′S2 + ξFS , (46)

where a non-zero λ in combination with a VEV 〈S〉 of the singlet generates a contribution
to the effective µ term µeff = µ + λ 〈S〉. Usually, the “ordinary” µ term (from the MSSM
superpotential) is taken to be zero in the NMSSM, yielding µeff = λ 〈S〉. The sign of the λ
term in eq. (46) coincides with the one in [15,31] where the Higgs doublet superfields appear
in opposite order. The remaining terms represent a general cubic potential for the singlet;
κ is dimensionless, µ′ has dimension of mass, and ξF has dimension of mass squared. The
additional soft SUSY-breaking terms relevant in the NMSSM are

Vsoft = m2
S|S|2 + (−εabλAλSHa

1H
b
2 +

1

3
κAκS

3 +B′µ′S2 + ξSS + h.c.) . (47)

As usual, the minimisation equations imposed by electroweak symmetry breaking imply that
we can trade the soft masses for MZ , tan β, and µeff . At tree level, the input parameters
relevant for the Higgs sector of the NMSSM can thus be chosen as

tanβ = v2/v1, µ, m
2
3, λ, κ, Aλ, Aκ, µ

′, B′, ξF , ξS, and either λ 〈S〉 or m2
S . (48)

As in the SLHA1, these parameters are all given at the common scale Minput, see [1].
If the MSSM µ term is not zero, it should be given in EXTPAR entry 23, as in SLHA1
[1]. The corresponding soft parameter m2

3 is given in EXTPAR entry 24, in the form of
m2
A = m2

3/(cos β sin β). Note that, in the NMSSM, m2
A is simply an effective parameter

and is not directly related to any physical particle mass.

4.2 Input/Output Blocks

Firstly, as described above in Section 2, BLOCK MODSEL should contain the switch 3 with
value 1, corresponding to the choice of the NMSSM particle content.

Further, new entries in BLOCK EXTPAR have been defined for the NMSSM specific input
parameters, as follows:

BLOCK EXTPAR

NMSSM Parameters
— Either of the parameters µeff or m2

S may be given, but not both.

61 : λ. Superpotential trilinear Higgs SH2H1 coupling.

62 : κ. Superpotential cubic S coupling.

19



63 : Aλ. Soft trilinear Higgs SH2H1 coupling.

64 : Aκ. Soft cubic S coupling.

65 : µeff = λ 〈S〉+ µ, with µ normally zero in the NMSSM.

66 : ξF . Superpotential linear S coupling.

67 : ξS. Soft linear S coupling.

68 : µ′. Superpotential quadratic S coupling.

69 : B′. Soft quadratic S coupling.

70 : m2
S. Soft singlet mass squared.

For non-zero values, signs can be either positive or negative. As noted above, the
meaning of the already existing entries EXTPAR 23 and 24 (the MSSM µ parameter and
corresponding soft term) are maintained, which allows, in principle, for non zero values for
both µ and 〈S〉. The reason for choosing µeff rather than 〈S〉 as input parameter 65 is that
it allows more easily to recover the MSSM limit λ, κ→ 0, 〈S〉 → ∞ with λ 〈S〉 fixed.

Proposed PDG codes for the new states in the NMSSM (to be used in the BLOCK MASS

and the decay files, see also Appendix A) are

45 for the third CP-even Higgs boson,
46 for the second CP-odd Higgs boson,
1000045 for the fifth neutralino.

In the spectrum output, running NMSSM parameters corresponding to the EXTPAR

entries above can be given in the block NMSSMPAR Q=...

BLOCK NMSSMPAR Q=...

Running NMSSM parameters, in the DR scheme, at the scale Q, see corresponding entries
in EXTPAR above for definitions.

1 : λ(Q)DR.

2 : κ(Q)DR.

3 : Aλ(Q)DR.

4 : Aκ(Q)DR.

5 : µeff(Q)DR.

6 : ξF (Q)DR.

7 : ξS(Q)DR.

8 : µ′(Q)DR.

9 : B′(Q)DR.
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4.3 Particle Mixing

In the CP-conserving NMSSM, the diagonalisation of the 3×3 mass matrix in the CP-even
Higgs sector can be performed by an orthogonal matrix Sij. The (neutral) CP-even Higgs

interaction eigenstates are numbered by φ0
i ≡

√
2Re

{
(H0

1 , H
0
2 , S)T

}
. If Φi are the mass

eigenstates (ordered in mass), the convention is Φi = Sijφ
0
j . The elements of Sij should be

given in a BLOCK NMHMIX, in the same format as the mixing matrices in SLHA1.
In the MSSM limit (λ, κ → 0, and parameters such that h3 ∼ SR) the elements of the

first 2× 2 sub-matrix of Sij are related to the MSSM angle α as

S11 ∼ cosα , S21 ∼ sinα ,

S12 ∼ − sinα , S22 ∼ cosα .

In the CP-odd sector the interaction eigenstates are φ̄0
i ≡

√
2Im

{
(H0

1 , H
0
2 , S)T

}
. We

define the 2× 3 mixing matrix P (block NMAMIX) by

−φ̄0TM2
φ̄0φ̄

0 = − φ̄0TP T︸ ︷︷ ︸
Φ̄0T

PM2
φ̄0P

T︸ ︷︷ ︸
diag(m2

Φ̄0 )

Pφ̄0︸ ︷︷ ︸
Φ̄0

, (49)

where Φ̄0 ≡ (A0
1, A

0
2) are the mass eigenstates ordered in mass and the Goldstone boson

G0 (the “3rd component”) has been explicitly left out and the remaining 2 rows form a set
of orthonormal vectors. Hence, Φ̄i = Pijφ̄

0
j . An updated version NMHDECAY2.2+ [31] will

follow these conventions.
If NMHMIX, NMAMIX blocks are present, they supersede the SLHA1 ALPHA variable/block.
The neutralino sector of the NMSSM requires a change in the definition of the 4 × 4

neutralino mixing matrix N to a 5 × 5 matrix. The Lagrangian contains the (symmetric)
neutralino mass matrix as

Lmass
χ̃0 = −1

2
ψ̃0TMψ̃0ψ̃

0 + h.c. , (50)

in the basis of 2–component spinors ψ̃0 = (−ib̃, −iw̃3, h̃1, h̃2, s̃)
T . We define the unitary

5× 5 neutralino mixing matrix N (block NMNMIX), such that:

−1

2
ψ̃0TMψ̃0ψ̃

0 = −1

2
ψ̃0TNT︸ ︷︷ ︸
χ̃0T

N∗Mψ̃0N
†︸ ︷︷ ︸

diag(mχ̃0 )

Nψ̃0︸ ︷︷ ︸
χ̃0

, (51)

where the 5 (2–component) neutralinos χ̃i are defined such that the absolute value of their
masses increase with i, cf. SLHA1 [1].
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5 Conclusion and Outlook

At the time of writing of the SLHA1, a large number of computer codes already existed
which used MSSM spectrum and coupling information in one form or another. This had
several advantages: there was a high motivation from program authors to produce and
implement the accord accurately and quickly, and perhaps more importantly, the SLHA1
was tested “in anger” in diverse situations as it was being written.

We find ourselves in a slightly different situation in terms of the SLHA2. There are
currently few programs that utilise information in any of the NMSSM or CP-violating,
R-parity violating, or non-trivial flavour violating MSSM scenarios. Thus we do not have
the benefit of comprehensive simultaneous testing of the proposed accord and the strong
motivation that was present for implementation and writing of the original one. What
we do have are the lessons learned in connection with the SLHA1 itself, and also several
almost-finished codes which are now awaiting the finalization of SLHA2 in order to publish
their first official releases. Concrete tests involving several of these were thus possible in
connection with this writeup.

We have adhered to the principle of backward compatibility wherever feasible. We
therefore expect that the conventions and agreements reached within this paper constitute
a practical solution that will prove useful for SUSY particle phenomenology in the future.

There are of course many issues not addressed even by this more extensive accord. Aside
from the the issue of treating more general models, there are the following outstanding
issues:

• How spin information could be transmitted within the decay information detailed in
the SLHA1, perhaps by listing spin density matrices.

• How Feynman rules should be presented for codes which perform radiative correc-
tions. Presently, improved tree-level information is typically passed, but higher-order
Feynman rules often have additional levels of ambiguity: regularisation and renor-
malisation schemes as well as gauge dependence, for instance.

• An estimate of theoretical errors in the entries.

Such issues could potentially be discussed in future Les Houches workshops and other
meetings.
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A PDG Codes and Extensions

Listed in Tab. 2 are the PDG codes for Standard Model particles and extended Higgs
sectors, including the NMSSM content. Tab. 3 defines the extra neutralino in the NMSSM
and generalises the PDG codes for the MSSM spectrum of superpartners to apply to the
flavour violating case. Note that these extensions are not officially endorsed by the PDG at
this time — however, neither are they currently in use for anything else. Codes for other
particles may be found in [44, chp. 33].

Table 2: Particle codes for the SM, MSSM, and NMSSM (see Tab. 3 for superpartners).
Names in parentheses correspond to the MSSM labelling of states [1].

Code Name Code Name Code Name
1 d 11 e− 21 g
2 u 12 νe 22 γ
3 s 13 µ− 23 Z0

4 c 14 νµ 24 W+

5 b 15 τ−

6 t 16 ντ
25 H0

1 (h0) 35 H0
2 (H0) 45 H0

3

36 A0
1 (A0) 46 A0

2

37 H+ 39 G (graviton)
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